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A new method based on time}frequency representations is presented for identifying the
non-linear modal parameters of a multi-degree-of-freedom non-linear lightly damped
mechanical system. The coupled non-linear modes are "rst introduced. It is shown that, by
using the coupled non-linear modes, the free response can be expressed as a linear
combination of frequency and amplitude modulated components. This suggests the use of
time}frequency methods to characterize these modulation laws and then identify the
coupled non-linear modes. These modulation laws are extracted by using an extended
de"nition of the so-called &&ridges'' of the continuous Gabor transform, which enables a more
accurate estimation. An identi"cation procedure of the coupled non-linear modes is
proposed and the validity of the whole process is con"rmed by performing computer
simulations of di!erent types of non-linear elastic dynamic systems.
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1. INTRODUCTION

The ability to determine the modal parameters of a mechanical structure is of great interest
in structural dynamics, and this is one of the goals of many experimental studies on
structural vibrations. In the case of linear structures, the modal theory is a well-known
approach to these problems. Classically, based on the principle of superposition, the natural
(or normal) modes of vibration of a linear system can be used to express free or forced
oscillations. In addition, numerous methods are now available for modal testing analysis
[1] and these are commonly used in industrial contexts.

Over the years, many investigations have focussed on the non-linear extension of the
de"nition of the normal mode de"ned in the classical theory of vibration. In this context,
a non-linear normal mode (NNM) of a conservative non-linear discrete or continuous
system has been de"ned as a periodic oscillation where all the material points in the system
reach their extreme value or pass through zero simultaneously. The concept of NNM has
been introduced by Rosenberg [2] for a system with n masses interconnected by strongly
non-linear springs. More recently, an interesting approach in terms of invariant manifolds
was proposed by Shaw and Pierre [3, 4]. These authors de"ne an NNM as a motion which
takes place on a two-dimensional invariant manifold in the phase space. These approaches
have been used in many subsequent e!orts to construct the NNM of conservative
non-linear systems, which would provide a valuable tool for understanding some essentially
non-linear dynamic phenomena (see the recent review by Vakakis [5]).

As in the case of linear theory, the NNM are associated with a particular set of initial
conditions, and since the superimposition principle is not valid in the non-linear case, the
0022-460X/01/220191#23 $35.00/0 ( 2001 Academic Press
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NNM cannot be used directly to express the response under arbitrary initial conditions. To
overcome this di$culty, several approaches have been proposed. Shaw and Pierre [3] have
used &&a non-linear co-ordinate transformation which performs the same function as the
well-known linear modal transformation in that it allows one to assemble a complete
solution from a sum of simpler (the NNM) ones''. Szemplinska-Stupnicka [6] introduced
the concept of coupled non-linear modes (CNMs). The free oscillations (with arbitrary
initial conditions) of a conservative non-linear system are approximated by a linear
combination of harmonic terms. Each harmonic term depends on a mode shape vector and
its corresponding frequency. Each couple of a frequency and a mode shape vector de"nes
a CNM. One important aspect of the CNMs is that the frequencies and mode shapes
depend on the amplitude of all the modes, whereas each NNM depends only on its
amplitude. The concept of the CNMs was also developed by Bellizzi and Bouc [7, 8] to
analyze lightly damped mechanical systems with strongly non-linear restoring forces under
random input.

Since the CNMs provide a valuable tool for characterizing a mechanical system with
non-linear restoring forces, an important question arises: how to identify the CNMs from
measured data? This inverse problem is addressed in this paper. A method for identifying
the CNMs of a multi-degree-of-freedom (m.d.o.f.) lightly damped mechanical system with
strongly restoring forces from transient response is presented. First, based on the
generalized van der Pol transformation, the CNMs are used to express the transient
response as a linear combination of quasi-harmonic terms giving a quasi-modal constitutive
behaviour. Each quasi-harmonic term characterizes the contribution of each CNM as the
product of three functions of time, namely the instantaneous (modal) amplitude, the
instantaneous frequency and the mode-shape vector. As mentioned above, the mode-shape
vector functions and the instantaneous frequency functions are amplitude dependent. The
expression of the quasi-harmonic terms in terms of sinusoids modulated both in amplitude
and frequency suggests the use of time}frequency analysis [9] to extract the modulation
laws. Time}frequency analysis has been previously applied to estimate the modal
parameters of a vibrating linear system [10, 11]. Time}frequency analysis has also been
used in the context of non-linear system identi"cation as a tool to detect [12] or to classify
[13] the non-linearity. In reference [12], the proposed technique is based on joint
application of Gabor and Hilbert transforms but methods only based on the Hilbert
transform have also been developed [14]. More recently, an identi"cation procedure for
m.d.o.f. non-linear systems based on (multi-scale) ridges and skeletons of the wavelet
transform was proposed in reference [15]. It is important to underline that, in general the
systems identi"ed by these approaches, with the exception of the one-degree-of-freedom
case, do not constitute the physical model of the system. The method used in the paper is
based on an extended de"nition of the &&ridges'' of the continuous time}frequency
representations which have not been used yet in the context of the analysis of non-linear
vibrations. The method requires the use of a frequency modulated analyzing function and
involves the partial derivatives of the phase of the transform with respect to both the time
and the frequency. Moreover, the interest of our approach is that by focusing on the CNMs,
we have a tool for identifying the physical model of the system.

This paper is organized as follows. In section 2, the mechanical system under
investigation is presented. The CNMs are formulated and used in the van der Pol
transformation to express the free response of the system. In section 3, the concept of
time}frequency analysis is brie#y introduced. We then present the new de"nition of the
&&ridges'' of the continuous Gabor transform, and show how it can be used to estimate the
modulation laws. Finally, an identi"cation procedure of the CNMs is given. In section 4,
three numerical experiments are described to illustrate the whole process.
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2. COUPLED NON-LINEAR MODES AND TRANSIENT RESPONSE

2.1. MECHANICAL SYSTEM UNDER STUDY

Consider an n d.o.f. autonomous mechanical system governed by the di!erential
equations

[M]XG (t)#2m[C]XQ (t)#F (X(t))"0, t3[0, ¹], (1)

X(0)"X0, XQ (0)"XQ 0, (2)

where the dot denotes the derivative with respect to time, X (t)"(X
1
(t), 2, X

n
(t))T is the

displacement vector, [M] and 2m[C] are the inertia and damping matrices (m is a real
positive parameter), the vector function F (Rn>Rn) gives the sti!ness forces acting on the
system, and X03Rn and XQ 03Rn denote the initial conditions. F is required to be
a monotonic piecewise continuously di!erentiable vector function, [M] and [C] to be
symmetric, positive-de"ned matrices and m to be strictly positive, and arbitrarily small
(0(m@1). The last assumption means that the study is restricted to a lightly damped
mechanical system. It is also assumed that there exists a single root, Xe3Rn, of F (Xe)"0
and that the linearized system obtained by linearizing (1) about the equilibrium point Xe

has n natural modes (i.e., [LF(Xe)]te"ue2te where [LF(X)] denotes the Jacobian matrix)
with n distinct and incommensurable natural frequencies. Note that it is not assumed that
F(!X)"!F (X).

This class of mechanical systems has been studied in references [7, 8] under additive
random excitation. A stochastic linearization method with random matrices was proposed
to characterize the stationary response. This method is based on decomposing the
stationary response dynamics. The same formalism will be used here to relate the transient
response to the CNMs. We shall begin by introducing the notion of coupled non-linear
modes.

2.2. COUPLED NON-LINEAR MODES

Consider the autonomous conservative system associated with (1),

[M]XG (t)#F (X(t))"0. (3)

The coupled non-linear modes are de"ned from a multi-harmonic approximation based on
the harmonic balance method to the solution of equations (2) and (3),

X (t)"W
0
#

n
+
i/1

W
i
a
i
cos(X

i
t#u

i
), (4)

WT
i
[M]W

i
"1, for i"1,2, n, (5)

where the vector W
0
3Rn de"nes the position or o!set, around which the movement is

established, the frequency-mode shape (X
i
, W

i
)3R

`
]Rn couples denote n non-linear

modes, and a
i
'0 and u

i
3[0, 2p] are constants depending on X0 and XQ 0. Due to the

normalization property (5), a
i
de"nes the modal amplitude of the ith coupled non-linear

mode.
Substituting expression (4) into equation (3) and applying the harmonic balance

procedure yields the non-linear algebraic equations

F
0
(a; W)"0, (6)
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i
, for i"1,2, n, (7)
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i
"1, for i"1,2, n, (8)

where
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12
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n
. (11)

Solving, for "xed a3Rn, the non-linear equations (6)}(8), with respect to the n#n2#n
unknowns W

0
, W

i
and X

i
yields the coupled non-linear modes as a function of the amplitude

vector a:

W
0
,W

0
(a), X

i
,X

i
(a), W

i
,W

i
(a), for i"1,2, n. (12)

The function X
i
(respectively, the vector function W

i
) characterizes the evolution of the

frequency (respectively, the mode shape) versus the amplitude vector a. For n"1, W
i
"1

and the function X(a) represents the inverse backbone curve of the system. The reader is
referred to reference [7] for a discussion about its existence and uniqueness.

The normalization of the vector mode shapes has been de"ned in equation (5).
Nevertheless, it should be pointed out that this normalization procedure is not the only
possible one, and other de"nitions can be used, (for example, W

ii
"1). As regards the

property of orthogonality, since no hypothesis as to the symmetry is made on the Jacobian
matrix of F, the vector mode shapes W

i
(a) for i"1,2, n do not generally comply with the

orthogonality properties. It is then usual to associate with the modal matrix
[W(a)]"[W

1
(a)2W

n
(a)] the adjoint modal matrix denoted [C (a)], which is classically

de"ned by

[C(a)]T[M][W (a)]"[I], (13)

where [I] denotes the identity matrix.
Note that the CNMs give a harmonic approximation of the NNMs when the procedure is

applied with a"(0,2, 0, a
i
, 0,2, 0) and a

i
O0. Hence the solution of the conservative

system with arbitrary initial conditions is not de"ned as a linear combination of the NNM,
and this is in agreement with the principle of superposition, which is not valid in the case of
non-linear systems.

2.3. FREE OSCILLATIONS FOR THE DAMPED SYSTEM

The aim of this section is to express the transient response of the damped system (1, 2)
from the CNM functions. For this purpose, the averaging principle is used.
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Consider the amplitude-phase transformation

X(t)"W
0
(a (t))#

n
+
i/1

W
i
(a(t))a

i
(t) cos /

i
(t), (14)

XQ (t)"!

n
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i/1
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(a (t))X
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(a(t))a

i
(t) sin /

i
(t), (15)
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i
(t)"h
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(t)#u
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(t)"P
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0

X
i
(a(s)) ds#u

i
(t) for i"1,2, n, (16)

where W
0
, X

i
and W

i
denote the CNM, a

i
(t)'0 (respectively, u

i
(t)3[0, 2p]) de"nes the

modal amplitude (respectively, the associated phase) of the ith CNM. Equation (14) is
similar to equation (4), but due to the dissipative terms, the amplitude and phase vectors are
now taken to be functions of time and the h

i
(t) terms have been formulated in order to take

into account the change in the instantaneous frequencies.
Upon using equations (14)}(16) the equations of motion (1, 2) take the forms

aR (t)"mf (a(t), h (t)#u(t)), (17)

uR (t)"mg(a (t), h (t)#u (t)), (18)

hQ (t)"X(a(t)), (19)

where f and g are multi-periodic vector functions with respect to the second variable h#u
(the total phase). In general, these di!erential equations are as di$cult to solve as the
original ones. Nevertheless, for a small m (which is the case here), a and u are slowly varying
functions with respect to the variation of X and it is possible to obtain an approximate
solution by using the averaging principle [16] based on the mean operator (11). As
described in reference [7] and based on some simplifying additional hypothesis, the
di!erential system (17)}(19) can be replaced by the averaged di!erential equations
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where the initial conditions a0
i
, u0

i
are constants depending on X0 and XQ 0,

c
i
(a)"CT

i
(a) [C]W

i
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a
i
. (21)

In the averaging approximation sense, the displacement vector takes the form

X (t)"W
0
(a(t))#

n
+
i/1

W
i
(a(t))a

i
(t) cos AP

t

0

X
i
(a (s)) ds#u0

i B , (22)

where the amplitude vector function a and the phase vector function u solve the di!erential
equations (20). The vector function u is a constant vector function (equal to u0) which
depends only on the initial conditions X0 and XQ 0. The n di!erential equations
characterizing the n modal amplitude components a

i
are coupled. The logarithmic

derivative of a
i
with respect to time is strongly in#uenced by the damping matrix m[C].

Note that as in the linear case, this expression is valid only for lightly damped mechanical
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systems because it does not take into account the frequency shift introduced by the
damping.

The expression (22) can be viewed as the result of the direct problem and we will now
focus on the inverse problem consisting of identifying the CNMs from the time history of
the transient response.

3. TIME}FREQUENCY REPRESENTATION AND NON-LINEAR VIBRATIONS

In the previous sections, it has been shown that non-linear systems give rise to vibrations
that can be decomposed into a sum of simple elements. These simple elements consist of
quasi-monochromatic signals the amplitude and frequency of which are both modulated, as
expressed by equation (22). In this section, we address the problem of characterizing
non-linear vibrations by extracting the corresponding modulation laws for each simple
element. From the practical point of view, this problem can be said to constitute a signal
processing problem. Actually, the aim is to decompose a given signal into the so-called
spectral lines, which are monochromatic signals, the frequency and amplitude of which are
both modulated [17]. Consider a scalar signal s (t) which is a combination of these simple
elements

s(t)"
n
+
i/1

A
i
(t) cos U

i
(t). (23)

Characterizing s(t) requires a description which provides information about its behaviour
in both the time and frequency domains. Although time and frequency are dual
representations with respect to the Fourier transform, one looks for a joint representation
with which the process of analysis can be easily interpreted. Actually, the time behaviour of
the energy as well as the variations of the instantaneous frequency of a signal are known to
be &&hidden'' in the phase and the modulus of its Fourier transform. In the general case,
where no a priori knowledge on the signal can be used, a frequency representation does
not give easily extractable modulation laws. Conversely, we shall describe how
time}frequency representations of non-stationary signals can be used to extract from signals
of this kind the functions A

i
(t) and U@

i
(t) (or U

i
(t)), yielding practical tools for characterizing

nonlinear vibrations. In this section, the prime will denote the derivative with respect
to time.

3.1. TIME}FREQUENCY REPRESENTATIONS OF NON-STATIONARY SIGNALS

Describing the distribution of the energy of an arbitrary signal on a time}frequency plane
is very important when it comes to addressing the analysis of evolving signals. This problem
can arise in many "elds, including the study of mechanical vibrations, such as for example
those arising in non-destructive evaluation problems or the characterization of audiophonic
signals. The problem can be expressed as follows: consider a signal s(t) with a "nite energy
E; is it possible to "nd an energy density o (t, u) such that E is &&spread out'' over the
time}frequency plane?:

E"P P o (t, u) dk (t, u). (24)

We shall not discuss here the general classes of solutions to this problem. Since the signals
we consider are multi-component signals, we shall focus on linear time}frequency



Figure 1. Signal analyzed (free oscillation, component x
1

of Example 1), modulus and phase of the Gabor
transform.
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representations in order to avoid interference terms in the representation. More
particularly, we shall use the continuous Gabor transform [18].

The Gabor transform of a signal s (t) with respect to the window= (t) is given by

¸
g
(q, a)"P s (t)=M (t!q) e~+a (t~q) dt. (25)

The correspondence sP¸ is linear, invertible and covariant by translation in both time and
frequency.

Other linear representations can be used, such as the wavelet transform, which is de"ned
by reference [9] as

¹ (b, a)"
1

a P gN A
t!b

a B s(t) dt. (26)

The choice of one or the other representation depends on the problem being addressed. The
wavelet transform is well adapted to transient signals (covariance by change of scale), while
the Gabor transform is suitable for quasi-periodic signals. In what follows, we shall describe
how the Gabor transform can be used to characterize non-linear vibrations, but all the
methods described can be transposed to the wavelet transform. In the next section, we
describe methods based on the time}frequency representations to accurately extract each
non-linear mode.

3.2. EXTRACTION OF FREQUENCY AND AMPLITUDE MODULATION LAWS OF A SIMPLE

ELEMENT OF A SIGNAL

Linear time}frequency representations such as Gabor representations are obtained by
comparing the signal in the vicinity of a given time with a family of analyzing functions. The
values obtained in this way are redundant, and only a subset of them are relevant in terms of
the information they convey. This assumption can be expressed mathematically by the fact
that the transforms are de"ned within a Hilbert space with reproducing kernel [19]. The
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question which naturally arises is then as follows: is it possible to extract from
a time}frequency representation a set of values such that all the information is preserved?
As we shall see, this set of values de"nes the so-called ridge of the transform. This ridge
corresponds to trajectories in the time}frequency plane following the frequency modulation
law of each simple element and allowing a precise description of each of them. Here we shall
present a formulation for analyzing mechanical vibrations based on an extension of the
classical &&ridges'' approach. The reader is referred to reference [20] for further details and
other applications of the method.

Consider a non-stationary asymptotic signal s(t)"A
s
(t) e+Us (t) and assume that its

frequency modulation law is locally linear and that its amplitude modulation law can be
expressed locally by a polynomial

U
s
(t)KU

s
(q)#(t!q)U@

s
(q)#

1

2
(t!q)2 UA

s
(q), (27)

A
s
(t)"

k/=
+
k/0

(t!q)k
k !

A(k)
s

(q). (28)

Consider now a &&chirped window''= (t), which will be used to select parts of the signal:

= (t)"expA
!t2

2p2 B exp Ajb
t2

2B . (29)

The Gabor transform of s(t) is given by

¸
g
(q, a)Kexp ( jU

s
(q))pS

2p

1!jp2(UA
s
(q)!b)

]
k/=
+
k/0

( j)k

k!
A(k)

s
(q)

Lk

Lak
exp A!

p2

2

(U@
s
(q)!a)2

1!jp2 (UA
s
(q)!b)B . (30)

Since the signal is asymptotic, one can assume that the term of order k"0 in the above
series is predominant. Consequently, the transform is mainly governed by the term

A
s
(q) expA!

p2

2

(U@
s
(q)!a)2

1!jp2(UA
s
(q)!b)BKA

s
(q)=K (U@

s
(q)!a)1@(1~+p2(U{{s (q)~b)). (31)

The behaviour of the transform can then be interpreted as a set of superimposed Fourier
transforms of =(t) located along the curve U@

s
(q)"a, called the ridge, that describes the

frequency modulation law of the signal in the Mq, aN plane (see Figure 2 of section 4).
In order to extract the frequency modulation law of the signal, one has to estimate the

curve U@
s
(q)"a with the help of the coe$cients of the transform. If the second derivative of

the phase of the analyzing function "ts the second derivative of the phase of the signal
(UA

s
(q)"b) the transform is given by

¸
g
(q, a)"exp( jU

s
(q))pJ2p

=
+
k/0

( j)k

k !
A(k)

s
(q)

Lk

Lak
exp A!

p2

2
(U@

s
(q)!a)2B (32)

With U
g
(q, a) denoting the phase of the Gabor transform, one can then show that the ridge

of the transform given by U@ (q)"a and UA(q)"b corresponds to the set of points on the

s s



Figure 2. Behaviour of the Gabor transform of a time-asymptotic signal as a superimposition of =K .
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time}frequency plane satisfying the so-called crossed criterion [20]

A
L
Lq

#UA
s
(q)

L
LaB U

g
(q, a)"U@

s
(q)"a, (33)

A
L
Lq

#UA
s
(q)

L
LaB

2
U

g
(q, a)"UA

s
(q)"b. (34)

This criterion allows the signal to be &&viewed'' through an adaptive "lter which adjusts
itself to the variations with time in the frequency of each simple element and whose
frequency modulation automatically adapts to that of the signal by matching both the
frequency modulation law and its slope. Moreover, since exp(!(p2/2) (U@

s
(q)!a)2) is

symmetric with respect to the curve U@
s
(q)"a, on the ridge, its odd order derivatives are

zero. Consequently, the series in equation (32) is real and the phase of the transform along
the ridge exactly matches the phase of the signal,

U
s
(q)"U

g
(q, U@

s
(q)) (35)

and the amplitude modulation law of the signal is approximated by the modulus of the
transform along the ridge:

A
s
(q)K

1

J2pp
D¸

g
(q, U@

g
(q)) D . (36)

In the context of this study, signals possess several simple elements. This might seem to be
a limitation restricting the use of this method, which has been discussed only in the case of
a single simple element. Nevertheless, in practice, it is usually possible to choose a frequency
selectivity that makes it possible to separate the components. Locally, the Gabor analysis
therefore deals only with one component. The bandwidth of the Gaussian analyzing
window used can be tuned to avoid any interferences from the other components by
suitably adapting its parameter p. This problem is discussed in Appendix and a procedure is
proposed to extract the modulation laws.
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3.3. COMPARISON WITH OTHER TECHNIQUES

In this section, we shall compare this method of estimation of modulation laws with other
techniques using also continuous linear time}frequency and time-scale representations. We
shall mainly consider the techniques previously used in the framework of identi"cation of
non-linear modes.

Generally speaking, the redundancy of the continuous linear joint representations brings
up the problem of identi"cation of trajectories in the domain of de"nition of the transforms
carrying a &&relevant'' information, in the sense that the restrictions of the transforms along
these trajectories allows the most accurate reconstruction of the signal. Several solutions to
this problem have been proposed. They all lead to criteria involving the partial derivatives
of the phase and the modulus of the representations and are based on approximations of the
transforms [21] using the stationary phase approximation technique. We shall "rst consider
a single simple element signal and summarize the performances and limitations of these
methods, ending with a comparison with the method we propose.

f Ridges and skeletons of the continuous wavelet transform. In the case of an asymptotic
signal (i.e., the amplitude of which varies slowly with respect to the phase), it can be shown
[21] that the ridge of the transform leads to an exact estimate of the frequency modulation
law only when the amplitude of the signal is constant and its frequency modulation law is
linear. When these conditions are not met, there exists a bias, depending both on the
bandwidth of the wavelet and on the derivatives of the amplitude and frequency
modulation laws. Without any approximation, it can be shown also [20] that the wavelet
transform provides an exact estimate of frequency modulation laws of hyperbolic type,
corresponding to homogeneous functions with complex degree.

f Ridges and skeletons of the continuous Gabor transform. When using the same formalism
and approximations as in the wavelet case, the conclusions are the same. The di!erent
geometry of the time}frequency plane with respect to the time-scale half-plane does not yield
any sympathetic properties in the case of signals with hyperbolic frequency modulation laws.

f Ridge of the Gabor transform using an adaptive window (our case). The choice of an
adapted window, the frequency modulation of which automatically matches the
frequency modulation law of the signal along the ridge lets one relax the constant
amplitude modulation law or the linear frequency modulation law assumptions. The
exact estimation of a linear frequency modulation law is possible whatever the amplitude
modulation law. It can also be shown that an exact estimation of a parabolic frequency
modulation law with a constant amplitude modulation law is possible.

In the case of signals with several simple elements, the advantage of our method resides in
its ability to separate simple elements the distance of which is small in the time frequency
plane. This is an important point in our context. We shall brie#y discuss the classical case of
two &&parallel'' linear frequency modulated components by considering the spreading of the
time}frequency atoms (reproducing kernels) along the ridges in the wavelet case, in the
Gabor case and in our adaptive Gabor case. Figure 3 of section 4 shows the reproducing
kernels corresponding to a wavelet analysis, a Gabor analysis, an adaptive Gabor analysis
of a signal composed of a sum of two parallel linear frequency modulated simple elements.
The horizontal axis is the time. The vertical axis is the frequency. The exact frequency
modulation laws are represented by the two parallel straight lines. From left to right one
can see the following.

f Reproducing kernel of a small-scale wavelet analysis or a wide-band Gabor analysis
(p small, b"0). In this case, the transform shows beats coming from the interferences
between the two simple elements of the signal in the frequency domain.



Figure 3. Reproducing kernel for di!erent time}frequency representations (from left to right, Gabor analysis
with p small and b"0, matched Gabor analysis with p large and bO0, Gabor analysis with p large and b"0).
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f Reproducing kernel of a Gabor analysis using a matched window the frequency
modulation of which follows on that of the signal (bO0). In this case, it is possible to
increase the selectivity of the analysis through the use of a large p to allow a better
separation of the simple elements.

f Reproducing kernel of a large-scale wavelet analysis or a narrow-band Gabor analysis (p
large, b"0). In this case, the transform shows beats coming from the interferences
between the two simple elements on the signal in the time domain.

3.4. IDENTIFICATION OF COUPLED NON-LINEAR MODES

As has been established in section 2, the transient response of system (1, 2) is given by
equation (22) and can be rewritten component by component as

X
m
(t)"W

m0
(t)#

n
+
i/1

A
mi

(t) cos /
i
(t), m"1,2, n, (37)

where

A
mi

(t)"W
mi

(a (t))a
i
(t) and /

i
(t)"P

t

0

X
i
(a (s)) ds#u0

i
. (38)

Each component X
m
(t) consists of a sum of quasi-harmonic terms (or simple elements with

the terminology used in section 3) with amplitudes, A
mi

(t), and instantaneous frequencies,
X

i
(a (t)) varying slowly with respect to time. The term A

mi
(t) cos /

i
(t) corresponds to the

contribution of the ith CNM to the jth component of X(t).
From a time history of the transient response sampled with a time-step Dt,

X(t
k
)"X(kDt), for k"1,2, N, the proposed procedure to identify the CNMs comprises

two steps.

Step 1. For each component X
m
, the amplitude A

mi
(t
k
), the instantaneous frequency

X
i
(a (t

k
)) and phase /

i
(t
k
) (for k"1,2, N) of each simple element are extracted using the

procedure described in the Appendix A. The estimates are denoted AI
mi

(t
k
), XI

mi
(t
k
) and

/I
mi

(t
k
), respectively. Note that the function W

m0
can be estimated by performing a simple
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low pass "ltering procedure that removes all the other CNMs. This "ltering procedure
naturally involves considering the restriction of the Gabor transform for a"0.

Step 2. From equation (38), the modal amplitudes a
i
and the mode shapes W

i
(a) are

estimated by using the following formulae:
For k"1,2, N, for i"1,2, n

aJ
i
(t
k
)"AI

ii
(t
k
),

WI
ii
(aJ (t

k
))"1,

WI
mi

(aJ (t
k
))"G

AI
mi

(t
k
)

AI
ii
(t
k
)

if D/I
mi

(t
k
)!/I

ii
(t
k
) D*p

!

AI
mi

(t
k
)

AI
ii
(t
k
)

if D/I
mi

(t
k
)!/I

ii
(t
k
) D(p

for m"1,2, n, mOi.

where the tilde denotes the estimate.
Hence, this procedure leads to an estimate for the CNMs on the subset

A"M(aJ
1
(t
k
) ,2, aJ

n
(t
k
))3Rn

`
/k"1,2, NN as

a3APG
W

0
(a)

(XI
i
(a), WI

i
(a)) for i"1,2, n.

(39)

The subset A corresponds to the trajectory of the measured data in the &&modal amplitude
space''.

Some remarks can be made on the above procedure.
The sign of the mode shape components is obtained by using the phase behaviour.
The analysis of a given component does not generally make it possible to estimate all the

modes. Actually, the contribution of some modes can be very slight, depending on the
measurement point location. In addition, depending on the initial conditions, some modes
are sometimes not excited.

There is redundant information for estimating the modal frequencies. Actually, each
component gives these frequencies. Nevertheless, this redundancy can be useful and can help
to improve the results, for example by correcting the biased ridges on some components.

4. NUMERICAL RESULTS

In this section, we give some computer simulation results. The estimated coupled
non-linear modes are compared with the theoretical ones in the case of three di!erent
non-linear systems. The free responses are obtained by solving the non-linear di!erential
system (1, 2) numerically, by using the Newmark scheme. The estimated coupled non-linear
modes are obtained with the method described above. For this purpose, the value of p was
chosen such that it gives a suitable frequency separation in the time}frequency plane. The
theoretical coupled non-linear modes are obtained by solving (analytically or numerically)
the non-linear algebraic system (6}8) by using the Newton}Raphson method for each
estimated modal amplitude vector.

4.1. SYSTEMS WITH TWO DOF AND CUBIC NON-LINEARITY

Consider the mechanical system (1, 2) with n"2, [C]"[I] and F (X)"[K
0
]X#

(XT[K
1
]X) [K

1
]X where [K

0
] and [K

1
] are two real matrices. Two cases have been

studied, one of which yields expressions for the theoretical coupled non-linear modes with
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amplitude-independent mode shapes. In each case, the [M]-normalization procedure was
used to de"ne the mode shapes.

4.1.1. Example 1

Here the system studied is de"ned by [K
1
]"j[K

0
] where j is a non-negative constant.

One can easily check that the coupled non-linear modes are

X2
1
(a

1
, a

2
)"uN 2

1A1#
3

4
j2a2

1
uN 2

1
#

1

2
j2a2

2
uN 2

2B , W
1
(a

1
, a

2
)"WM

1
, (40)

X2
2
(a

1
, a

2
)"uN 2

2A1#
1

2
j2a2

1
uN 2

1
#

3

4
j2a2

2
uN 2

2B , W
2
(a

1
, a

2
)"WM

2
, (41)

where (uN 2
k
, WM

k
) for k"1, 2 correspond to the natural modes of the undamped linear system

de"ned by j"0: i.e.,

[K
0
]WM

k
"uN 2

k
[M]WM

k
, WM T

k
[M]WM

k
"1. (42)

Figure 4 shows the free response obtained with m"0)02, j"3,

[M]"A
1

0)5

0)5

1 B , [K
0
]"A

1

1

1

4B , X0"A
0)5

0)5B , XQ 0"A
0

0B
used as the input data for the proposed method. Figure 1 gives the modulus and the phase of
the Gabor transform of the "rst component (shown on the top). The horizontal axis is the
Figure 4. Example 1. Free oscillation.
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time, and the vertical axis, the frequency. The values of the representation are coded
according to a grey-scale palette. One can see two nearly horizontal stripes corresponding
to non-linear modes. Figure 5 (top curves) shows the changes with respect to time in the
modal amplitudes (a

1
(t) and a

2
(t)) extracted by time}frequency analysis. These amplitudes

have been used to calculate the theoretical coupled non-linear modes. Figure 5 shows the
theoretical and extracted frequency modulation laws governing the two modes. Figure 6
compares the evolution of the theoretical and extracted mode shapes with respect to time.
As expected, these mode shapes do not depend on time. Good agreement can be seen to
exist between the theoretical and extracted curves. Note also, for each mode, that there
exists good agreement between the extracted frequencies obtained from each component.
A bias can, nevertheless, be observed at the beginning of the curves, due to the presence of
a singularity (the signal is assumed to be zero for negative values of time) detected by the
time}frequency analysis process.

4.1.2. Example 2

Consider now the system de"ned by m"0)02, j"1,

[M]"A
1

0)7

0)7

1 B , [K
0
]"A

1

1

1

6B , [K
1
]"A

3

2

2

3B ,

where the theoretical mode shapes are dependent on amplitude.
Figure 5. Example 1. Modal amplitudes extracted from x
1

and x
2
. Non-linear modal frequencies (X

1
and X

2
)

versus time: extracted from x
1

(dashed lines), extracted from x
2

(dotted lines), theoretical (continuous lines).



Figure 6. Example 1. Non-linear modal shapes versus time: extracted from x
1

and x
2

(dashed lines), theoretical
(continuous lines).
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Figure 7 shows the free response obtained with

X0"A
0)5

0)5B , XQ 0"A
0

0B
used as the input data with the present method. All the results are given in Figures 8 and 9,
which show the existence of good agreement between the theory and the estimate. This is an
interesting example since it corresponds to a system in which the attenuation of each mode
is di!erent. This behaviour can be seen both in the signals themselves (Figure 7) and in the
extracted modal amplitude components (Figure 8) which show that the second mode
decreases faster than the "rst one. This provides an explanation for the behaviour of the
extracted characteristics of the second mode component (see for example W

12
in Figure 9).

Numerical instabilities actually appear when its amplitude becomes too small. Note also
that the mode shape vector can be calculated up to a sign with this procedure (see Figure 9).

4.2. BEAM WITH ELASTIC STOPS

Considered here is a clamped-free beam with a pair of elastic stops "xed on the support
(see Figure 10). The bending vibration of the beam with length ¸ is governed by

oA
L2u(z, t)

Lt2
#

L2

Lz2 AEI
L2u(z, t)

Lz2 B#h (u(z
b
, t))d

0
(z!z

b
)"0, (43)

where EI, o, A, u (z, t), d
0
(z) denote the sti!ness bending, the mass density, the section area,

the relative transversal displacement with respect to the frame at location z, and the Dirac



Figure 7. Example 2. Free oscillation.
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delta function, respectively. The vibro-impact force at the impact location z
b
is de"ned by

h (u)"G
k
1
(u!e

1
), e

1
(u

0, !e
2
(u(e

1
k
2
(u#e

2
), u(!e

2

, (44)

where k
1

and k
2

denote the sti!nesses of the stops and e
1
, e

2
the associated clearances.

By using the modal expansion principle, an approximate solution to equation (43) is
given by

u
n
(z, t)"

n
+
i/1

;
i
(z)q

i
(t), (45)

where ;
i
(z) denotes the mode shape associated with the natural frequency u

i
de"ning the

ith mode of the linear nominal system (43) with h (u)"0 (beam without stops).
The modal components q

i
(t) satisfy the non-linear di!erential equation

qK
i
(t)#2md

i
u

i
qR
i
(t)#u2

i
q
i
(t)#

;
i
(z

b
)

oA¸

h (u
n
(z

b
, t))"0 for i"1,2, n. (46)

These equations are coupled by non-linear terms and as usual, a viscous damping term has
been added to account for the dissipative e!ects. Based on the approximation (45), and by
using equation (46), the vector X (t)"(u(z

1
, t) ,2, u (z

n
, t))T, which corresponds to the



Figure 8. Example 2. Extracted modal amplitudes from x
1

and x
2
. Non-linear modal frequencies (X

1
and X

2
)

versus time: extracted from x
1

(dashed lines), extracted from x
2

(dotted lines), theoretical (continuous lines).

Figure 9. Example 2. Non-linear modal shapes versus time: extracted from x
1
, and x

2
(dashed lines), theoretical

(continuous lines).
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Figure 10. Beam with elastic stops.
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de#ection of the beam at n distinct points z
1
,2, z

n
, can be characterized by a di!erential

system of the form (1). This di!erential system has been studied here.
The simulation was performed with the parameter values of EI"326)3 Nm2,

o"2495 kg/m3 (corresponding to an aluminium beam), and ¸"1 m,
A"1)321]10~4 m2. The stops were placed at point z

b
"0)484 m. The sti!nesses and

(asymmetrical) clearance values were k
1
"k

2
"79107 N/m, e

1
"0)272]10~3 m and

e
2
"0)072]10~3 m, respectively. Only two measurement points (n"2, z

1
"0)994 m and

z
2
"0)6 m) have been taken into consideration, and hence only the "rst two modes were

used in equation (45), where the natural frequencies of the associated linear system were
u

1
/2p"17)5 Hz and u

2
/2p"110 Hz. The damping values chosen were m"0)005, d

1
"1

and d
2
"1)3.

Figure 11 shows the free response (u
1
(t)"u (z

1
, t) and u

2
(t)"u (z

2
, t)) at two points

z
1

and z
2

used as input data with the method described above. All the results are given in
Figures 12 and 13 and show the existence of good agreement between the theory and the
estimate. Here the coupled non-linear modes have been de"ned by using the normalization
procedure W

ii
(a)"1 (see equations (6}8)). This is an interesting example, since it

corresponds to an asymmetrical system leading to non-zero o!set terms (see Figure 13).
From the modal amplitude curves (see Figure 12), it can be seen that the decay times of the
modal amplitudes are di!erent and that the "rst mode dominates (in a ratio of 10). The



Figure 11. Beam with elastic stops. Free oscillation.

IDENTIFICATION OF COUPLED NON-LINEAR MODES 209
modal frequency of the "rst mode shows three di!erent regions. The "rst one corresponds to
a beam impacting both stops. The second one corresponds to a beam impacting only the
nearest stop. The third one corresponds to the non-impacting case, in which the frequency is
constant and corresponds to the natural frequency of the system: u

1
/2p"17)5.

5. CONCLUSION

In this paper, a time}frequency domain method has been presented which can be used to
identify the non-linear modal parameters of a multi-degree-of-freedom non-linear
mechanical system. In particular, it was established that a time}frequency transformation of
the transient response can be used to identify the non-linear modes. The advantage of
time}frequency representations is that they make it possible to distinguish between the
modal components of the same signal. In addition, an algorithm has been used with which
each of the modal components can be continuously estimated. The good agreement existing
between the extracted CNMs and the theoretical ones con"rms the validity of the averaging
principle as a means of characterizing the transient response by using the CNMs. In the
examples given here, the bias introduced by the estimation procedure itself in the vicinity of
the beginning of the signal does not mask the non-linear e!ect. However, in the case of
systems which are strongly damped or show brief non-linear e!ects, for example, this bias



Figure 12. Beam with elastic stops. Modal amplitudes extracted from u
1

and u
2
. Non-linear modal frequencies

(X
1

and X
2
) versus time: extracted from x

1
(dashed lines), extracted from x

2
(dotted lines), theoretical (continuous

lines).
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might be too large to give an accurate estimate. It is now proposed to develop procedures
giving information about the damping. By using information available in the model, it
should be possible to obtain a model for the frequency modulation law governing the
elementary terms. This should make it possible to draw up and use a speci"c
time}frequency representation that would give an exact estimate of the CNMs.
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APPENDIX A: ALGORITHMIC ASPECT TO EXTRACT MODULATION LAWS

Consider the scalar signal

s (t)"
n
+
i/1

A
i
(t) cos(U

i
(t)), t3[0, ¹]

which is a combination of n simple elements with amplitude A
i
(t) and frequency modulation

U@
i
(t) laws. Denote by

¸
g
(q, s)"A

g
(q, s) e+Ug(q,s)

the Gabor transform of s(t). Under the asymptotic hypothesis for each simple element (see
section 3.2), and by assuming that locally, the Gabor analysis deals only with one simple
element, i.e.=K (U@

i
(q)!U@

l
(q))K0, for iOl, the pairs (U@

i
(q)!UA

k
(q)) satisfy, for i"1,2, n

and for all q3[0, ¹], the so-called crossed criterion
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L
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g
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i
(q))"UA

i
(q).

The set of points (q, U@
i
(q)) with q3[0, ¹] de"nes the ridge of the ith simple element.

In order to extract for each simple element the frequency modulation law U@
i
(q) (leading to

U
i
(q) and A

i
(q) from equations (35) and (36)), a continuation method combined with the

classical "xed-point algorithm is used to solve with respect to (a, b) the algebraic systems

A
L
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#b
L
LaB U

g
(q, a)"a, A

L
Lq

#b
L
LaB

2
U

g
(q, a)"b,

for q varying in [0, ¹].
For a given time q

k
3[0, ¹], the "xed point algorithm with the two variables a and b is as

follows.

f Update step.
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This expression for b
l`1

is numerically easy to compute, since it can be viewed as the
di!erence between two a

l`1
values computed at two di!erent frequencies (the di!erence

between which is b
l
) and two consecutive samples. The two a

l`1
values are obtained by

deriving the phase of the transform between two consecutive samples at two di!erent
frequencies (the di!erence between which is also b

l
).

f Convergence criteria. With ∀e taken to be arbitrarily small, the criteria are

D a
l`1

!a
l
D(e, D b

l`1
!b

l
D(e.

By assuming b"UA
r
(q

k
), one can prove the convergence of the algorithm giving a. The

convergence of the algorithm which gives b has been checked only numerically.
The choice of the initial values to start the "xed point algorithm depends on the value of

the time q. Two cases have to be considered.

f For k"0 (i.e. q
0
"0), the initial values a

0
and b

0
"x the ridge to follow. In practice, the

value a
0
is obtained from the local maximum of the modulus of the Gabor transform near

q
0
"0 and b

0
"0.

f The continuation process from time q
k

to time q
k`1

"q
k
#dq is performed with initial

values

a
0
"a

=
#b

=
dq, b

0
"b

=
,

where a
=

and b
=

denote the values of a and b obtained when the convergence criteria are
satis"ed for the time q

k
.
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